Robotic to Help People with Disabilities

Posted on

wheelchair robot

Robotics is grown rapidly time to time. science and engineering can do to improve the wheelchair, and be surprised by the answer that much has been and remains to be done. One of the areas in which science and engineering are making the breakthroughs of tomorrow is in applying computer modeling, rapid-prototyping and robotics to create electric powered mobility and manipulation devices. Such devices provide people with very severe disabilities — those that affect both the use of their arms and legs — the ability to perform tasks with minimal assistance or even independently.

Computer modeling allows engineers to design and simulate such systems within a virtual space. Simulations range from the mechanical and circuit design to the complex control and coordination systems needed to make all of the components work together.

Robotic to Help People with DisabilitiesOne of our greatest challenges is ensuring that the powered mobility and manipulation device actually meets the user’s needs, and that the science is guided by problems facing people with disabilities.

In our work, we collaborate closely with people with disabilities and incorporate them into our research and development team. These collaborators highlight some of the hurdles that they face, and other potential uses of powered mobility and manipulation devices, such as driving on rough terrain like snow, ice, grass, sand and gravel.

For people who have limited or no use of their arms, it is equally as challenging to complete such tasks as making a sandwich, putting away clothes, and shopping.

Many people would like to drive the powered mobility device in parks, on winter days or across gravel roads, which is difficult and sometimes impossible with the technology of today. Likewise, people with some severe disabilities require a person to help them perform tasks, such as adjusting their jacket, which many of us take for granted.

Rapid-prototyping and robotics provide some promising solutions to at least some of the challenges faced by people with severe mobility and manipulation, and offer hope for greater independence.

Rapid-prototyping helps engineers to make models and even one-off devices in a cost effective and timely manner. This allows computer models to become physical models within days, and real systems within months rather than years. This accelerates the research and design process, and affords people with disabilities more opportunities to participate in the scientific process.

Robotics has traditionally focused on replacing humans in the performance of tasks to achieve greater efficiencies or to reduce human exposure to risk. In our work, the person and robot must work together in what we call cooperative control. In our cooperative control model, we have a pilot who is the actual person with a disability, a remote human assistant, and the robotic system.
With cooperative control these three core units work in unison to achieve the actions desired by the pilot in natural environments.

This approach speeds deployment from the laboratory into the real-world, and allows scientists and people with disabilities to learn from each other throughout the process, to work towards achieving practical robotic mobility systems that safely, effectively, and efficiently help people with disabilities perform the activities that they desire.


Go..go.go.. robotics technology…

Gravatar Image
Robotics Technology , Tutorial and News

Leave a Reply

Your email address will not be published. Required fields are marked *